If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^-3x+1=(1/16)^2x
We move all terms to the left:
8^-3x+1-((1/16)^2x)=0
Domain of the equation: 16)^2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-3x-((+1/16)^2x)+1+8^=0
We add all the numbers together, and all the variables
-3x-((+1/16)^2x)=0
We multiply all the terms by the denominator
-3x*16)^2x)-((+1=0
Wy multiply elements
-48x^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $
| 12x2+7x=12 | | 10^(3x-2)=10000 | | 61/2x+9=0 | | 10^(3x-2=10000 | | f+25/3=4 | | 5x8−940=25xx= | | 9(y-80)=90 | | f-73/7=3 | | 3.6=z+2 | | v+13/6=4 | | Y²-11y+28=0 | | 2n-27=21 | | 4x-4x-6+3=0 | | 8y−1=2y+17 | | h+1512=2 | | 2x^2+19x+12=0 | | 4x-2+8x-9=135 | | 1.1x+2.35=-8 | | E=4x²-4x+1 | | X-8-6x=12 | | 32×x=144 | | 10p-6+8=62 | | 5x-4+9=-20 | | 3(x-4)+2(x-1)=15 | | x+0.2x=913 | | 10(b)=50 | | 45.99c-50=1.33.96 | | 64=4(p) | | 4x-5=-3(8x-8)+27 | | 4x^2+12x-200=0 | | 3-7c+3c=-18 | | 12^2=+b^2=20^2 |